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ABSTRACT

Cattle can be naturally colonized with foodborne pathogenic bacteria such as Shiga Toxin-producing E. 

coli (STEC) in their gastrointestinal tract.  While these foodborne pathogens are a threat to food safety, they 

also cause human illnesses via cross contamination of other foods and the water supply, as well as via direct 

animal contact.  In order to further curtail these human illnesses and ensure a safe and wholesome food 

supply, research into preharvest pathogen reduction controls and interventions has grown in recent years.  

This review addresses the ecology of STEC in cattle and potential controls and interventions that have been 

proposed or implemented to reduce STEC in cattle.  We focus in this review on the use of management 

practices and the effects of diet and water management.  Implementation of preharvest strategies will not 

eliminate the need for good sanitation procedures in the processing plant and during food preparation 

and consumer handling.  Instead, live-animal management interventions must be implemented as part of 

a multiple-hurdle approach that complements the in-plant interventions, so that the reduction in pathogen 

entry to the food supply can be maximized.  
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INTRODUCTION

One of the largest food safety (and economic) im-

pacts on the cattle industry has been the emergence 
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of Shiga Toxin-producing Escherichia coli (STEC) 

bacteria, which are part of the natural reservoir in ru-

minant animals such as cattle (Karmali et al., 2010).  

STEC-caused illnesses cost the American economy 

more than $1 billion each year in direct and indirect 

costs from more than 175,000 human illnesses (Scal-

lan et al., 2011; Scharff, 2010).  Furthermore, since 

the emergence of the “poster child” of STEC, E. coli 
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O157:H7, more than $2 billion dollars have been 

spent by the cattle industry to combat STEC in pro-

cessing plants (Kay, 2003).  

While post-harvest pathogen-reduction strate-

gies have been largely successful at reducing direct 

foodborne illness, these processing interventions 

have not been perfect (Arthur et al., 2007; Barkocy-

Gallagher et al., 2003), in large part because avenues 

of human exposure include indirect routes (LeJeune 

and Kersting, 2010; Nastasijevic, 2011).  In order to 

further curtail human illnesses and ensure a safe and 

wholesome food supply, research into preharvest 

pathogen reduction controls and interventions has 

grown in recent years (Callaway et al., 2004; LeJeune 

and Wetzel, 2007; Oliver et al., 2008; Sargeant et al., 

2007).  

The impact of using pathogen reduction strate-

gies focused on the environmental contamination 

and exposure routes at the live animal stage are like-

ly to have large impacts on resulting human illnesses 

(Rotariu et al., 2012; Smith et al., 2012).  Reduction 

of STEC can also yield public health improvements 

in rural communities (LeJeune and Kersting, 2010) 

and amongst attendees of agricultural fairs, ro-

deos and open farms (Keen et al., 2006; Lanier et 

al., 2011).  Thus, the logic underlying focusing on 

reducing foodborne pathogenic bacteria in live 

cattle is straightforward: 1) reducing the amount of 

pathogens entering processing plants will reduce 

the burden on the plants and render the in-plant 

interventions more effective; 2) reducing horizontal 

pathogen spread from infected animals (especially 

in “supershedders”) in transport and lairage; 3) will 

reduce the pathogenic bacterial burden in the envi-

ronment and wastewater streams; and 4) will reduce 

the direct risk to those in direct contact with animals 

via petting zoos, open farms, rodeos and to animal 

workers.  This review addresses the microbial ecol-

ogy of STEC colonization of cattle and controls and 

interventions that have been proposed or imple-

mented to reduce STEC in live cattle in the areas 

of: 1) Management practices and transport, and 2) 

Cattle water and feed management.

 

EHEC, STEC, VTEC AND NON-O157:H7’S: 
A PRIMER

Although the relatively recent (1982) emergence 

of E. coli O157:H7 into public view makes it seem 

that this organism is a new arrival in the food chain, 

data indicates that this organism is far more ancient, 

having arisen between 400 and 70,000 years ago 

(Law, 2000; Riley et al., 1983; Wick et al., 2005; Zhou 

et al., 2010).  Although a variety of acronyms have 

been applied to the “hamburger bug”, they belong 

to a single group that acquired toxin genes from Shi-

gella via a gene transfer event (Kaper et al., 2004; 

Karmali et al., 2010; Wick et al., 2005).  Research-

ers refer to these pathogens often interchangeably 

as Enterohemorrhagic E. coli (EHEC), Shiga toxin-

producing E. coli (STEC), or Verotoxin-producing E. 

coli (VTEC).  While E. coli O157:H7 was the first of 

the STEC’s to be recognized as a major food safety 

threat, recently the other “non O157:H7 STEC” have 

been increasingly implicated in human illness out-

breaks (Bettelheim, 2007; Fremaux et al., 2007).  Be-

cause of this linkage, the “gang of six” non-O157 se-

rogroups (O26, O45, O103, O111, O121, and O145) 

have joined O157:H7 as being classified as adulter-

ants in beef (USDA/FSIS, 2012).  Since this declara-

tion, focus has shifted on understanding the general-

ized STEC ecology, rather than simply focusing on E. 

coli O157:H7 (Gill and Gill, 2010).   

For years, researchers (including the present au-

thors) assumed that in general, all of the non-O157 

STEC would behave similarly to O157:H7 in a physi-

ological and ecological sense.  However, recent 

research has found that in addition to the genetic 

divergence seen in O157:H7 lineages (Zhang et al., 

2007), there appear to be significant physiological 

differences between and within non-O157 STEC 

which may play a role in the ecological niche occu-

pied in the ruminant gastrointestinal tract by these 

non-O157 serotypes (Bergholz and Whittam, 2007; 

Free et al., 2012; Fremaux et al., 2007).  While these 

and other physiological differences need to be inves-

tigated further, and their roles in the gastrointestinal 

microbial population must be determined, it appears 

that the O157:H7 serotype is well adapted to survive 
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in cattle (García et al., 2010; O’Reilly et al., 2010) and 

that other STEC serotypes can also live in the gastro-

intestinal tract of cattle (Arthur et al., 2002; Chase-

Topping et al., 2012; Joris et al., 2011; Monaghan et 

al., 2011; Polifroni et al., 2012; Thomas et al., 2012), 

and be transferred into ground beef (Bosilevac and 

Koohmaraie, 2011; Fratamico et al., 2011).  

While we understand much of how E. coli O157:H7 

behaves in the gastrointestinal tract and farm envi-

ronment, we know very little about the ecology of 

other STEC in those environments (Monaghan et al., 

2011; Polifroni et al., 2012).  Thus this review focuses 

on pre-harvest pathogen interventions based upon 

E. coli O157:H7 data.  We hypothesize that non-

O157:H7 STEC will largely behave in a broadly simi-

lar fashion to E. coli O157:H7 in the gastrointestinal 

and farm environment; however this is an educated 

assumption and that imposed limitation must be un-

derstood.  Thus readers must be aware that most of 

the research referred to in this review is based upon 

E. coli O157:H7 specifically, and may or may not ap-

ply to all STEC.

ECOLOGY OF STEC AND GASTROIN-
TESTINAL COLONIZATION

Because E. coli O157:H7 (and to some degree 

non-O157 STEC) co-evolved along with its host it is 

uniquely well-fitted to survive in the gastrointestinal 

tract of cattle as a commensal type organism (Law, 

2000; Wick et al., 2005).  While  E. coli O157:H7 can 

live in the rumen of cattle (Rasmussen et al., 1999), 

the site of primary colonization is the terminal rec-

tum (Naylor et al., 2003; Smith et al., 2009a).  This 

organism produces a potent cytotoxin (Shiga toxin) 

that does not seriously impact its preferred host (cat-

tle) because they lack toxin receptors (Pruimboom-

Brees et al., 2000), but this same toxin causes serious 

illness in humans colonized by E. coli O157:H7 (Kar-

mali et al., 2010; O’Brien et al., 1992).  Unfortunately, 

this means that the natural commensal-type relation-

ship between STEC (including O157 and non-O157) 

and cattle ensures that this organism can be passed 

on to meat products and consumers of beef (Fe-

rens and Hovde, 2011).  This transmission most fre-

quently occurs during summer months, and is linked 

to a summer increase in the prevalence of E. coli 

O157:H7 in cattle (Edrington et al., 2006a; Lal et al., 

2012; Naumova et al., 2007; Ogden et al., 2004; Wells 

et al., 2009), not just an increase in consumption or 

a change of cooking habits by consumers (Money et 

al., 2010; Williams et al., 2010a).  It has been sug-

gested that neuroendocrine factors may play a role 

in E. coli O157:H7 (Edrington et al., 2006a; Green et 

al., 2004), as may signaling between host and intes-

tinal microbial populations or within STEC popula-

tions via quorum-sensing (Edrington et al., 2009b; 

Sperandio, 2010; Sperandio et al., 2001).  Further 

possible interactions within the microbial ecosystem 

of the rumen are demonstrated in the preferential 

consumption of E. coli O157:H7 by ruminal protozoa 

(Epidinium), and increased populations in the pres-

ence of Dasytricha (Stanford et al., 2010).

Because of the nature of STEC survival in the 

ruminant gut, it is no surprise that it persists in fe-

cal deposits (Dargatz et al., 1997; Jiang et al., 2002; 

Maule, 2000; Yang et al., 2010) and in soils (Bolton 

et al., 2011; Semenov et al., 2009; Van Overbeek et 

al., 2010).  This allows E. coli O157:H7 to cycle within 

pens and farms in a fecal-oral route (Russell and Jar-

vis, 2001), recirculating within groups or individual 

animals (Arthur et al., 2010).  The presence of super-

shedding cattle (Chase-Topping et al., 2008) in the 

population can further enhance this horizontal trans-

mission within a herd or a pen of cattle (Arthur et 

al., 2010; Arthur et al., 2009; Cobbold, 2007; LeJeune 

and Kauffman, 2006).  However, the host/dietary/mi-

crobial factors underlying the “supershedder” status 

of cattle remains unknown, as do factors that allow 

simple gut colonization by E. coli O157:H7.  Thus it 

is apparent that the farm/pen/facility environment 

plays an important role in STEC colonization and re-

circulation, as well as via direct and indirect transmis-

sion to human farm workers/visitors and consumers 

(Ihekweazu et al., 2012; LeJeune and Kersting, 2010; 

Smith et al., 2012; Stacey et al., 2007; Strachan et al., 

2006).
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MANAGEMENT PRACTICES AND 
TRANSPORTATION

Good management of cattle is critical for efficient 

animal production, but to date no typical “manage-

ment” procedures have been shown to affect colo-

nization or shedding of foodborne pathogens (Ellis-

Iversen et al., 2008; Ellis-Iversen and Van Winden, 

2008; LeJeune and Wetzel, 2007), some practices 

may reduce horizontal transmission and recirculation 

of STEC within a herd of cattle (Ellis-Iversen and Wat-

son, 2008).  However, the use of management tools 

like the squeeze chute (crush) to process cattle has 

been shown to increase the odds of hide contami-

nation with E. coli O157(Mather et al., 2007). Yet, in 

spite of this lack of evidence regarding impacts on 

food safety, good management practices are criti-

cal to ensuring animal health and welfare (Morrow-

Tesch, 2001).  

Bedding and pen surfaces

E. coli O157:H7 can live for a long period of time 

in manure, soil and other organic materials (Jiang 

et al., 2002; Maule, 2000; Winfield and Groisman, 

2003) and can be transmitted successively through 

their environment (Semenov et al., 2010; Semenov 

et al., 2009).  Cattle, especially dairy cows, are bed-

ded on materials that are largely chosen on animal 

health and welfare grounds.  Unfortunately, bedding 

material can harbor bacteria that are responsible for 

mastitis, as well as foodborne pathogenic bacteria 

that can be spread between cattle (Davis et al., 2005; 

Oliver et al., 2005; Richards et al., 2006; Wetzel and 

LeJeune, 2006).  Researchers have shown that urine 

increases growth of E. coli O157:H7 on bedding, po-

tentially by providing substrate for growth (Davis et 

al., 2005).  Modeling research has shown that an in-

crease in bedding cleaning frequency would increase 

the death rate of E. coli O157:H7 (Vosough Ahmadi 

et al., 2007).  Further studies have demonstrated that 

the use of very dry bedding reduced E. coli O157:H7 

prevalence on farms (Ellis-Iversen et al., 2008; Ellis-

Iversen and Van Winden, 2008).  Researchers have 

shown that sand bedding reduced transmission of E. 

coli O157:H7 between dairy cows, resulting in lower 

populations of E. coli O157:H7 in cattle bedded on 

sand compared to sawdust (LeJeune and Kauffman, 

2005; Westphal et al., 2011).  It is suspected that this 

difference was due to desiccation or reduced nutri-

ent availability.  

Feedlot surfaces were thought to contain ma-

nure-like bacterial populations, but recent molecular 

studies have indicated that the bacterial communi-

ties of feedlot surfaces are complex, yet utterly dis-

tinct from fecal bacterial populations (Durso et al., 

2011).  This suggests that traits that favor survival 

in the gastrointestinal tract (anaerobic, warm, dark) 

do not favor survival on the feedlot surface (aerobic, 

cooler, sunlit).  Surfaces such as pond ash do not im-

pact survival of E. coli O157 (Berry et al., 2010), how-

ever studies and anecdotal evidence indicates that a 

greater number of cattle shed E. coli O157:H7 when 

housed in muddy pen conditions than cattle from 

pens in normal condition and that the condition of 

the pen floor may influence the prevalence of cat-

tle shedding the organism and the ability of E. coli 

O157:H7 to survive dry conditions (Berry and Miller, 

2005; Smith et al., 2001; Smith et al., 2009b).  Studies 

have recently demonstrated that sunlight can reduce 

E. coli O157:H7 populations on pen surfaces (Berry 

and Wells, 2012) and in water systems (Jenkins et 

al., 2011).  Overall, bedding or pen cleaning will not 

eliminate E. coli O157:H7 from any farm or feedlot 

environment, but it may slow spread within a herd or 

between penmates.

Manure Management

E. coli O157:H7 and other STEC survive in manure 

and can persist for a lengthy period of time (up to 

21 months) (Bolton et al., 2011; Fremaux et al., 2007; 

Hutchison et al., 2005; Kudva et al., 1998; Varel et 

al., 2008).  Although there are differences amongst 

STEC strains in their ability to persist in manure, 

these appear to be related to the oxidative capacity 

of each strain (Franz et al., 2011).  The presence of 

a native bacterial population in manure reduces E. 

coli O157:H7 survival in soils (Van Overbeek et al., 

2010).  The amendation of manure in soil can result in 
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STEC uptake directly by plants, including food crops 

(Franz and Van Bruggen, 2008; Jiang et al., 2002; Se-

menov et al., 2010; Semenov et al., 2009).  Rainfall 

events can also wash STEC from cattle feces (stored 

or in fields) into drinking or irrigation water supplies 

(Anonymous, 2000; Cook et al., 2011; Ferguson et al., 

2007; Oliveira et al., 2012; Pachepsky et al., 2011).  As 

the mean temperature of manure rises during stor-

age the survival of E. coli O157:H7 is reduced (Se-

menov et al., 2007), indicating that composting can 

enhance manure safety, thus reducing human illness-

es (Graham and Nachman, 2010; Kelley et al., 1999).

There have been few studies that have isolated 

STEC consistently from cattle waste lagoons (Purdy 

et al., 2010).  This is potentially due to the oxidized 

nature of the lagoon, or the presence of a native mi-

crobial population.  In waste water lagoons, there are 

protozoa that preferentially consume E. coli O157:H7 

(Ravva et al., 2010), possibly explaining at least some 

of the difference between E. coli O157:H7 survival in 

manure with that of limited survival in dairy lagoons 

(Ravva et al., 2006).  Research has demonstrated that 

the addition of chemical oxidants to wastewater 

lagoons can reduce pathogen populations (Luster-

Teasley et al., 2011).

Biosecurity

Farm biosecurity is critical for animal health and 

welfare, especially in regard to animal diseases, but 

to date there has been little direct impact demon-

strated on foodborne pathogenic bacteria such as 

E. coli O157:H7 (Ellis-Iversen and Van Winden, 2008).  

Research has shown that other animal species, ro-

dents, insects and birds and boars can carry STEC at 

least transiently (Branham et al., 2005; Cernicchiaro 

et al., 2012; French et al., 2010; Rice et al., 2003; Sán-

chez et al., 2010; Wetzel and LeJeune, 2006).  Mix-

ing of sheep with cattle has been shown to increase 

the risk of cattle shedding STEC (Stacey et al., 2007), 

and a positive correlation between cattle and sheep 

density was found, at least in the UK (Strachan et al., 

2001).  Other diverse factors such as the presence 

of dogs, pigs, or wild geese on the farm have been 

linked to an increased risk of E. coli O157:H7 shed-

ding (Gunn et al., 2007; Synge et al., 2003).  Ruminant 

animals other than cattle do carry E. coli O157:H7 

(French et al., 2010; Hussein et al., 2000; Sargeant 

et al., 1999), and this includes sheep and deer that 

often share the same pasture, feed bunks and wa-

ter supplies (Bolton et al., 2012; Branham et al., 

2005).  Other researchers have found that flies and 

other insects on farms can carry STEC from one loca-

tion to another (Ahmad et al., 2007; Hancock et al., 

1998; Keen et al., 2006; Talley et al., 2009).  Further-

more, wild migratory birds such as starlings (Carlson 

et al., 2011a; Carlson et al., 2011b; Cernicchiaro et 

al., 2012; Wallace et al., 1997; Wetzel and LeJeune, 

2006), cowbirds and egrets (Callaway, unpublished 

data) can carry STEC (and other foodborne patho-

gen) between pens, and even between farms long 

distances apart.  While these effects are probably 

minimal in their direct impact on food safety within a 

farm, they represent vectors for pathogens to move 

between “clean” groups of cattle or farms.

Cattle grouping

Many farms are closed to entry by animals from 

other farms to prevent animal disease transmission.  

Closed herds prevent spread of E. coli O157:H7 (and 

other pathogens) from one farm to another (Ellis-

Iversen et al., 2008; Ellis-Iversen and Van Winden, 

2008; Ellis-Iversen and Watson, 2008).  However 

some studies have shown that a closed farm does 

not impact E. coli O157:H7 incidence on farms (Cob-

baut et al., 2009).  The results of this study suggest 

that E. coli O157:H7 should be considered common 

to groups of feedlot cattle housed together in pens 

(Smith et al., 2001), thus keeping groups together 

throughout their time on a farm, or in a feedlot, with-

out introducing new members to groups appears to 

reduce horizontal transmission between animals.

A further benefit of grouping cattle involves the 

use of age as a segregating factor.  Young cattle (es-

pecially heifers) shed more E. coli O157:H7 than do 

older cattle (Cobbaut et al., 2009; Cray and Moon, 

1995; Smith et al., 2001).  While it is not possible 

to segregate calves from cows in the beef indus-

try, there is potential benefit to keeping same-age 
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groups of calves together as they are transported 

and enter backgrounding or feedlot operations to 

prevent horizontal transmission between groups.  

Off-site rearing of dairy heifers may be an important 

solution to reducing foodborne pathogens, as has 

been shown in regard to Salmonella (Hegde et al., 

2005), and the risk of transmission back to the farm 

by heifers returning from an off-site facility was found 

to be low (Edrington et al., 2008).  

Animal density may also play a role in the horizon-

tal spread of E. coli O157:H7 and other foodborne 

pathogens (Vidovic and Korber, 2006) as well as the 

vertical spread to humans (Friesema et al., 2011b).  

Densely packed animals have a great chance of con-

tamination with fecal spread.  However increased an-

imal density reduces the physical footprint and may 

allow for more efficient and effective waste handling.  

It has been shown that higher animal density can be 

linked to an increased risk of carriage of some STEC, 

including O157:H7 (Frank et al., 2008; Vidovic and 

Korber, 2006).  Other European studies have also 

found an effect of animal density on human STEC 

illnesses (Friesema et al., 2011a; Haus-Cheymol et 

al., 2006), yet Canadian researchers found a variable 

impact (Pearl et al., 2009).   Further studies found 

that increased stocking density increased shedding 

of STEC, independent of group size (Stacey et al., 

2007; Strachan et al., 2006).

The issue of “supershedders” complicates re-

search into effects of animal density and pathogen 

shedding (Arthur et al., 2009; Cernicchiaro et al., 

2010; Chen et al., 2012; LeJeune and Kauffman, 2006; 

Stanford et al., 2005).  If supershedders do exist long 

term, rather than simply being a transient phase of 

infection, then there are interactive effects of animal 

density and pathogen density in the animal that must 

be accounted for (Matthews et al., 2006; Matthews et 

al., 2009).  The role of super-shedding animals (even 

if a transient phenomenon) cannot be discounted 

in the contamination of hides during transport and 

lairage, especially in dense conditions (Arthur et al., 

2010; Arthur et al., 2009).  

Transportation and lairage

Handling and transport to processing plants or 

feedlots or other farms causes stress (see below) and 

may spread E. coli O157:H7 due to physical contact 

or fecal contamination, and trailers used may spread 

pathogens between lots or loads of cattle (Mather 

et al., 2007).  Studies have indicated that transport 

did not affect STEC populations in cattle, however 

in these studies E. coli O157:H7 populations were 

very low initially (Barham et al., 2002; Minihan et 

al., 2003; Reicks et al., 2007; Schuehle Pfeiffer et al., 

2009).  However, other studies have found that trans-

port caused an increase in fecal shedding of E. coli 

O157:H7 (Bach et al., 2004).  Researchers found that 

transporting cattle more than 100 miles doubled the 

risk of having positive hides at slaughter compared to 

cattle shipped a short distance, though the question 

of time in close-confinement versus being in transit 

was not examined (Dewell et al., 2008).  In another 

study, longer transport times were correlated with 

increased levels of fecal shedding of E. coli O157:H7 

(Bach et al., 2004).  It was also demonstrated that a 

combination of transport and lairage did not lead to 

an increase in the number or prevalence of E. coli 

O157:H7 from cattle (Fegan et al., 2009).  

The presence of a high shedding animal in a 

trailer has been shown to increase the odds of other 

animals within the load being hide-positive for E. 

coli O157:H7 (Arthur et al., 2010; Arthur et al., 2009; 

Fox et al., 2008).  However, it should be noted that 

both low- and high-shedding cattle can be respon-

sible for the spread within and between truckloads 

(Dodd et al., 2010).  Cattle trailers can be important 

fomites of E. coli O157:H7 to uninfected cattle and 

are frequently positive for E. coli O157:H7 when 

sampled (Barham et al., 2002; Cuesta Alonso et al., 

2007; Reicks et al., 2007).  It has been shown that the 

incidence of E. coli O157:H7 in transport trailers in-

creases the risk of transmission to farms and feedlots 

from cattle on these trailers (Cuesta Alonso et al., 

2007).  To date however, the washing of trailers has 

only been shown to be effective against Salmonella 

contamination in swine (Rajkowski et al., 1998), yet it 

is an intuitive, feasible solution to prevent some de-

gree of cross-contamination of cattle during a stress-

ful period.
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Lairage and holding facilities are further locations 

that can impact the prevalence and concentration of 

E. coli O157:H7 on hides of cattle, which is an impor-

tant route of entry to the food supply (Arthur et al., 

2007).  Studies have shown that the transfer of E. coli 

O157:H7 to hides that occurs in lairage at processing 

plants accounted for more of the hide and carcass 

contamination than did the population of cattle leav-

ing the feedlot (Arthur et al., 2008).  Furthermore, the 

presence of supershedding cattle in these pens can 

increase the spread of E. coli O157:H7 between ani-

mals from different farms or feedlots (Arthur et al., 

2010; Cernicchiaro et al., 2010).  The exact role of 

lairage and transport/trailers in the spread of E. coli 

O157:H7 (and other pathogens) in cattle is unclear, 

and is likely time- and animal density-dependent, 

and may also be affected by stress.

Stress

While we understand stress intuitively, any dis-

cussion of “stress” in animals is fraught with anthro-

pomorphism and complexity (Rostagno, 2009; Ver-

brugghe et al., 2012).  Long-term stress may depress 

immune function in cattle (Carroll and Forsberg, 

2007; Kelley, 1980; Salak-Johnson and McGlone, 

2007), making them more susceptible to coloniza-

tion, but the short term effects of stress from wean-

ing, handling or transport on immune status are un-

known.  Catecholamines rise when animals are under 

stress, and catecholamines (along with other hor-

mones) have been demonstrated to have an effect 

on the microbial population, including pathogens 

(Freestone and Lyte, 2010; Lyte, 2010; Walker and 

Drouillard, 2012).  To date the effect of stress on col-

onization or shedding of E. coli O157:H7 is unclear.  

Weaning is stressful to calves, and was shown to 

increase colonization with STEC (Herriott et al., 1998) 

and E. coli O157:H7 (Chase-Topping et al., 2007).  In 

other studies however, these researchers demon-

strated that weaning does not affect the likelihood of 

shedding (Synge et al., 2003).  Interestingly, calving 

was seen to reduce the likelihood of E. coli O157:H7 

shedding (Synge et al., 2003).  Further studies found 

that weaning stresses alone did not impact shedding 

of E. coli O157:H7 in dairy calves (Edrington et al., 

2011).  Other stresses such as movement have been 

identified as playing a role in E. coli O157:H7 shed-

ding in Scottish cattle (Chase-Topping et al., 2007), 

but this has not been clearly defined in U.S. cattle 

systems.

When calves were preconditioned to transport 

stress, they were found to be less susceptible to in-

fection from the environment than were calves not 

preconditioned to this stressor (Bach et al., 2004).  

Cattle with excitable temperaments were less like-

ly to shed E. coli O157:H7 than were “calm” cattle 

(Brown-Brandl et al., 2009; Schuehle Pfeiffer et al., 

2009).  In studies with pigs, it was found that the so-

cial stress/excitement of mixing penmates increased 

fecal shedding of Salmonella (Callaway et al., 2006), 

but this has not been shown to date in cattle, how-

ever this implies a potential role of social stresses in 

cattle during lairage.

  Heat stress (and methods to alleviate it) can have 

effects on animal health and productivity (Brown-

Brandl et al., 2003), as well as shedding of E. coli 

O157:H7 and Salmonella (Callaway et al., 2006).  

Water sprinkling to alleviate heat stress in cattle 

increased measures of animal well-being and de-

creased E. coli O157:H7 populations on the hides of 

cattle, but did not affect fecal populations (Morrow 

et al., 2005).  In another study with dairy cattle, re-

searchers found that heat stress had no impact on 

STEC shedding, but Salmonella shedding was in-

creased (Edrington et al., 2004). Other researchers 

have also found that heat stress did not impact E. 

coli O157:H7 shedding in cattle (Brown-Brandl et al., 

2009).

CATTLE WATER AND FEED MANAGE-
MENT

Diet and water supplies can be used to reduce 

horizontal transmission of STEC between animals on 

the same farm or in the same feedlot pen. The un-

derlying biology behind these effects has not been 

elucidated to this point, but it has been suggested 

that difference could be due to increased fecal pH or 
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intermediate endproducts of the yeast fermentation 

(e.g., vitamins, organic acids, L-lactic acid), however 

these suggestions remain hypothetical (Wells et al., 

2009).  While the magnitude of the dietary impacts 

effects is relatively small, it underlines the point that 

dietary composition can potentially significantly im-

pact E. coli O157:H7 populations in the gut of cattle.   

Drinking Water treatments

Cattle water troughs can harbor E. coli O157:H7 

for long periods of time (Hancock et al., 1998; 

LeJeune et al., 2001a; LeJeune et al., 2001b; Mu-

rinda et al., 2004; Polifroni et al., 2012; Wetzel and 

LeJeune, 2006), and as many as 25% of cattle farm 

water samples have been shown to contain E. coli 

O157:H7 (Sanderson et al., 2006).  These results sug-

gest that these common-use troughs can be vectors 

for horizontal transmission of E. coli O157:H7 within 

a group of animals. The organic material in the wa-

ter troughs tends to harbor and protect the STEC, 

and modeling research has shown that an increase 

in water trough cleaning frequency would increase 

the death rate of E. coli O157:H7 (Vosough Ahmadi 

et al., 2007) as well as exposure to sunlight (Jenkins 

et al., 2011).  Chlorination of water supplies has long 

been used to reduce bacterial populations in mu-

nicipal water supplies, and this also can be used in 

cattle water troughs to reduce E. coli O157:H7 pop-

ulations. However, sunlight and organic material in 

the water reduces the effectiveness of chlorination 

over time, as has been seen in real world chlorina-

tion studies with cattle water troughs (LeJeune et al., 

2004).  Electrolyzed oxidizing (EO) water has been 

shown to reduce STEC populations as high as 104 

CFU/mL (Stevenson et al., 2004), and can be used as 

an in-plant hide cleaning strategy (Bosilevac et al., 

2005).  Other treatments such as cinnamaldehyde 

and sodium caprylate addition to water supplies 

have been shown to reduce STEC populations, but 

the effects on palatability are not currently known 

(Amalaradjou et al., 2006; Charles et al., 2008).

Fasting

Cattle can be fasted for up to 48 h before and dur-

ing their transport to slaughter, which can affect the 

prevalence of E. coli O157:H7 (Pointon et al., 2012).  

Ruminal and intestinal VFA concentrations limit the 

proliferation of E. coli because of toxicity of the VFA 

to the bacteria (Hollowell and Wolin, 1965; Russell 

and Diez-Gonzalez, 1998; Wolin, 1969).  This has cre-

ated the demand for the use of organic acids/VFA 

as methods to alter the ruminal fermentation and to 

reduce pathogen populations in the gut (Ohya et al., 

2000; Prohaszka and Baron, 1983; Van Immerseel et 

al., 2006).  However, fasting causes levels of VFA to 

decline rapidly (Harmon et al., 1999).

Fasting increased E. coli, Enterobacter and total 

anaerobic bacterial populations throughout the in-

testinal tract of cattle (Buchko et al., 2000b; Greg-

ory et al., 2000), and increased Salmonella and E. 

coli populations in the rumen (Brownlie and Grau, 

1967; Grau et al., 1969).  More recent research has 

demonstrated that fasting can cause “apparently 

E. coli (O157:H7) negative animals to become posi-

tive” (Kudva et al., 1995).  Fasting made calves more 

susceptible to colonization by inoculated E. coli 

O157:H7 (Cray et al., 1998).  Cattle fasted for 48 h 

prior to slaughter contained significantly greater 

E. coli populations throughout the gut than cattle 

fed forage (Gregory et al., 2000).  In contrast, it was 

demonstrated that a fasting period had no effect 

on E. coli O157:H7 shedding (Harmon et al., 1999).  

When culled dairy cows were reconditioned through 

feeding high energy diets for 28 d before harvest, 

the prevalence of E. coli O157:H7 declined from 

14% to 6% (Maier et al., 2011).  In general, studies 

examining the intestinal environment have repeat-

edly indicated that low pH and high concentrations 

of short chain VFA result in lower STEC populations 

(Bach et al., 2002a; Bach et al., 2005b; Cobbold and 

Desmarchelier, 2004; Pointon et al., 2012; Shin et al., 

2002).  Thus the bulk of research supports the con-

cept that fasting increases shedding or population 

concentrations, or makes cattle more susceptible to 

colonization due to decreased short chain VFA and 

increased pH in the gastrointestinal tract.  Because 

feed withdrawal and/or starvation results in de-

creased VFA concentrations in the gut, it has been 
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suggested that this shift plays a role in the effects of 

transport and/or lairage on the shedding of STEC. 

 

Feed types

The first dietary practice shown in early studies 

to significantly increase the risk of STEC shedding 

among heifers was feeding corn silage (Herriott et 

al., 1998).  In adult cows, the inclusion of animal by-

products in the diet (currently discontinued) was 

shown to increase STEC shedding (Herriott et al., 

1998).  Other studies linked feeding whole cotton-

seed with reduced E. coli O157 shedding (Garber et 

al., 1995; Hancock et al., 1994). Fecal samples from 

cattle fed dry rolled corn, high-moisture corn and 

wet corn gluten feed did not contain different popu-

lations of generic E. coli, or extreme acid-resistant E. 

coli during a limit-feeding period (Scott et al., 2000).  

However, feces from cattle fed wet corn gluten ad 

libitum contained significantly higher concentrations 

of extreme acid resistant E. coli (resistant to an acid 

shock simulating passage through the human stom-

ach) than did feces of cattle fed dry-rolled or high 

moisture corn (Scott et al., 2000).  

Barley is often fed to cattle and is ruminally fer-

mented more rapidly than corn by the commensal 

microbial population.  More starch is fermented in 

the lower gut of corn-fed cattle than in barley-fed 

cattle, resulting in barley-fed cattle having higher fe-

cal pH and lower VFA concentrations compared with 

corn-fed animals (Bach et al., 2005a; Berg et al., 2004; 

Buchko et al., 2000a).  Barley feeding was linked (al-

beit at a low correlation) to increased E. coli O157:H7 

shedding (Dargatz et al., 1997); and in experimen-

tal infection studies barley feeding was again asso-

ciated with increased shedding of E. coli O157:H7 

by feedlot cattle (Buchko et al., 2000a).  Survival of 

E. coli O157:H7 in manure from corn-and barley fed 

cattle is approximately equal, therefore simple sur-

vival in the feces is not responsible for the increased 

prevalence of E. coli O157:H7 in barley-fed cattle 

(Bach et al., 2005b).  

Distiller’s grains

The industrial fermentation of corn to produce 

ethanol has increased more than 4-fold between 

2001 and 2007, and its use doubled by 2010 (Rich-

man, 2007).  Thus, an economic incentive to increase 

the utilization of distillers grains (DG) by-product 

feeds in the cattle industry has increased dramati-

cally in recent years, especially given DG’s role as 

cost-effective feed supplements for finishing and 

lactating cattle (Firkins et al., 1985).  The inclusion 

DG into cattle rations has been shown to be an ef-

fective replacement for common feedstuffs and has 

demonstrated an increased daily gain in beef cattle 

(Al-Suwaiegh et al., 2002) and milk yield and feed ef-

ficiency in dairy cows (Kleinschmit et al., 2006).  This 

improvement is likely due to the fact that DG alters 

the population structure and function of the micro-

bial ecosystem of the rumen and throughout the 

gastrointestinal tract (Callaway et al., 2010a; Durso 

et al., 2012; Williams et al., 2010b).  Cattle fed 40% 

corn wet distiller’s grains (WDG) were very different 

than the fecal populations in cattle fed a non DG-

containing diet, and populations of generic E. coli 

were higher in their feces (Durso et al., 2012), and in 

previous studies the survival of E. coli O157:H7 in fe-

ces was increased by increasing levels of DG supple-

mentation (Varel et al., 2008).

Unfortunately, research has suggested a potential 

association between DG feeding and an increased 

prevalence and fecal shedding of the foodborne 

pathogen E. coli O157:H7 in cattle (Jacob et al., 

2008a; Jacob et al., 2008b; Yang et al., 2010).  Distill-

ers grains were shown to increase the shedding of 

E. coli O157:H7 in cow-calf operations in Scotland 

(Synge et al., 2003).  Other researchers found that 

feeding a related product (brewers grain) to cattle 

was also associated with increased E. coli O157 

shedding, and increased the odds of shedding by 

more than 6-fold (Dewell et al., 2005).  The individual 

animal prevalence of feedlot cattle shedding E. coli 

O157 on d 122 (but not d 136) was higher in cattle 

fed 25% wet distiller’s grain compared to control di-

ets lacking WDG (Jacob et al., 2008b), but the pen-

level shedding was unaffected by WDG feeding.  

Pen floor fecal sample prevalence of E. coli O157 was 

significantly higher across a 12 week finishing period 
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in cattle fed 25% DDG and either 15% or 5% corn 

silage compared with cattle fed 0% DDG and 15% 

corn silage (Jacob et al., 2008a).  However, follow-up 

studies found no differences in E. coli O157:H7 fe-

cal shedding in cattle fed DG (Edrington et al., 2010; 

Jacob et al., 2009), with no indications of why this 

difference in results was observed.  In a further study 

utilizing both dry and wet-distillers grains, research-

ers found that higher levels (40% of the ration) of DG 

inclusion did increase fecal E. coli O157:H7 shedding 

(Jacob et al., 2010).  When cattle were fed 40% wet 

DG, they had higher populations of E. coli O157:H7 

as well as higher pH values and lower concentra-

tions of L-lactate (Wells et al., 2009). Further studies 

found that the DG-associated increase in fecal E. coli 

O157:H7 populations could be mitigated by reduc-

ing WDG concentrations to 15% or less for 56 d prior 

to slaughter (Wells et al., 2011).  When corn or wheat 

DDG were supplemented into cattle on a primarily 

barley-based diet, there was no difference in impact 

of DDG supplementation, likely because barley in-

clusion had already increased the E. coli O157:H7 

populations through some complementary mecha-

nism (Hallewell et al., 2012).  Interestingly, research-

ers found that the numbers of E. coli O157:H7 were 

greater in fecal in vitro incubations that contained 

corn DG than with wheat DG (Yang et al., 2010).  

Grain form

Other scientists have examined the form of corn 

included in cattle rations can impact E. coli O157:H7.  

In feedlot cattle, steam-flaked grains increased E. 

coli O157 shedding in feces compared to diets com-

posed of dry-rolled grains (Fox et al., 2007).  This 

difference was theorized to be due to dry rolling al-

lowing the passage of more starch to the hindgut 

where it was fermented to produce VFA thereby kill-

ing E. coli O157 (Fox et al., 2007).  This theory is sup-

ported by the fact that post-ruminal starch infusion 

increased generic E. coli populations in the lower 

gut numerically (Van Kessel et al., 2002).  However, to 

date studies have shown no effect on E. coli O157:H7 

populations of increasing starch concentrations in 

the diet (Nagaraja, T. G., personal communication) 

or by increasing fecal starch concentrations (Depen-

busch et al., 2008).

Forage feeding

Escherichia coli can and does thrive in the lower 

gut of animals fed forage diets (Hussein et al., 2003a; 

Hussein et al., 2003b; Jacobson et al., 2002).  Com-

paring grain-fed to forage-fed cattle indicates that 

more E. coli (including O157:H7) are present in the 

feces of cattle fed grain diets.  The effects of high 

grain or high forage diets on the duration or shed-

ding of fecal E. coli O157:H7 populations in experi-

mentally inoculated calves have been examined.  In 

these studies the calves that consistently shed the 

highest concentrations of E. coli O157:H7 were fed 

a high concentrate (grain) diet (Tkalcic et al., 2000).  

Ruminal fluid collected from steers fed a high-forage 

diet allowed E. coli O157:H7 to proliferate to higher 

populations in vitro than did ruminal fluid from high-

grain fed steers (Tkalcic et al., 2000).  This was pos-

sibly due to differences in VFA concentrations be-

tween the ruminal fluids.  

Other researchers found that feeding forage ac-

tually increased the shedding of E. coli O157:H7 in 

cattle (Van Baale et al., 2004).  When cattle were fed 

forage E. coli O157:H7 was shed for 60 d compared 

to 16 d for cattle on a grain-based diet (Van Baale et 

al., 2004).  Studies examining the effects of forage 

on survival of E. coli O157:H7 in manure found that 

low quality forages caused a faster rate of death of 

E. coli O157 populations (Franz et al., 2005), indicat-

ing a possible role of forage chemical or secondary 

plant components (such as tannins, see below) in fe-

cal shedding (Min et al., 2007).  Feces from cattle fed 

grain had higher VFA concentrations and lower pH 

which allowed E. coli O157:H7 populations to survive 

longer than feces from grass-fed cattle (Lowe et al., 

2010).  Other studies have found that feeding forage 

rich secondary compounds such as sainfoin, might 

be a method to manipulate fecal populations of E. 

coli O157:H7 to a limited extent (Aboaba et al., 2006; 

Berard et al., 2009).

  Although E. coli O157:H7 populations are gen-

erally lower in cattle fed forage diets, it must be 
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emphasized that STEC are still isolated from cattle 

solely fed forage, so forage feeding should not be 

viewed as a magic bullet (Hussein et al., 2003b; Thran 

et al., 2001).  Many outlets have claimed that grass-

fed cattle contain fewer pathogens than do cattle 

fed grain; however this has not been demonstrated 

scientifically.  Researchers have found no difference 

in food safety parameters of beef from grass-fed cat-

tle versus grain fed cattle (Zhang et al., 2010).  Fur-

thermore, research into organic versus conventional 

rearing systems have demonstrated no difference in 

the incidence of E. coli O157:H7 shedding (Jacob et 

al., 2008c; Reinstein et al., 2009). 

Dietary shifts

A sudden shift from grain to hay appears to cause 

a severe, widespread disruption in the gut microbial 

flora population, much like an earthquake in a mac-

robiological environment (Fernando et al., 2010).  

Thus the effects of rapid dietary shifts on the micro-

bial population in regards to E. coli O157:H7 popula-

tions have been examined.  Early studies investigat-

ing (generic) E. coli and dietary effects indicated that 

a sudden decrease in hay intake by cattle increased 

fecal E. coli populations (Brownlie and Grau, 1967).  

Other studies using experimentally infected sheep 

found a sudden switch from an alfalfa pellet diet or 

a corn/alfalfa ration to a poor-quality forage diet 

increased E. coli O157:H7 shedding (Kudva et al., 

1995; 1997).  

Cattle fed feedlot-type ration contained (generic) 

E. coli populations that were 1000-fold higher than 

cattle fed a 100% good-quality hay diet (Diez-Gon-

zalez et al., 1998).  When these cattle were abruptly 

switched from a 90% grain finishing ration to a 100% 

hay diet, fecal E. coli populations declined 1000-fold 

within 5 d (Diez-Gonzalez et al., 1998).  However, 

it is important to note that in this study no E. coli 

O157:H7 were detected.  Based on these results 

the authors suggested that feedlot cattle could be 

switched from high grain diets to hay for 5 days prior 

to slaughter to reduce E. coli contamination entering 

the abattoir (Diez-Gonzalez et al., 1998).  Research 

indicated that a brief (5 d) period of hay-feeding did 

not impact carcass characteristics; however, when 

cattle were fed hay during the final portion of the fin-

ishing period, they had lower dry matter intake and 

lost 2.2 lb/head/d (Stanton and Schutz, 2000).  Hay 

feeding did not significantly impact carcass weight, 

dressing percentage, carcass grades, or quality pa-

rameters, but significantly reduced total coliform 

counts and (generic) E. coli counts (Stanton and 

Schutz, 2000), but the impact was not as large as that 

reported by Diez-Gonzalez et al. (1998).  Cattle fed 

hay for a 48 h period immediately prior to transport 

to slaughter did not lose more weight during trans-

port than fasted or pasture fed animals (Gregory et 

al., 2000).  Cattle with a natural E. coli O157:H7 in-

fection (53%) were divided into two groups and one 

was fed grain and the other abruptly switched to 

hay, 52% of the grain-fed controls remained E. coli 

O157:H7 positive, but only 18% of the hay-fed cattle 

continued to shed E. coli O157:H7; but this switch re-

sulted in a BW decrease of 1.25 lb/hd/d compared to 

controls (Keen et al., 1999).  Other researchers found 

that cattle fed a high-concentrate diet and switched 

to a diet containing 50/50% corn silage/alfalfa hay 

diet had lower E. coli counts (0.3 log10) after just 4 

days (Jordan and McEwen, 1998).  Cattle that were 

fed an 80% barley ration, fasted for 48 h and then 

subsequently switched to 100% alfalfa silage did 

not exhibit any change in E. coli O157:H7 shedding 

(Buchko et al., 2000b).  However, when these same 

animals were again fasted for 48 h and re-fed alfalfa 

silage, the prevalence of E. coli O157:H7 shedding 

increased significantly (Buchko et al., 2000b).  Re-

searchers found that experimentally-infected cattle 

fed hay shed E. coli O157:H7 significantly longer 

than did grain-fed cattle (42 d vs. 4 d), but E. coli 

O157:H7 populations shed were similar between 

diets (Hovde et al., 1999).  Cattle abruptly switched 

from a finishing diet that contained wet corn gluten 

feed to alfalfa hay for 5 d showed an increase in co-

lonic pH and total E. coli populations decreased ap-

proximately 10-fold (Scott et al., 2000).  

Conversely, it was found that when cattle were 

switched from forage-type diets to a high grain fin-

ishing ration, fecal and ruminal generic E. coli con-

centrations increased (Berry et al., 2006).  In another 



50    Agric. Food Anal. Bacteriol. •  AFABjournal.com  •  Vol. 3, Issue 1 - 2013  

study slightly outside of the “normal” dietary switch 

structure, switching cattle from pasture to hay for 48 

h prior to slaughter significantly reduced the E. coli 

population throughout the gut (Gregory et al., 2000).  

Gregory et al., found that hay feeding increased in-

testinal Enterococci populations that are capable of 

inhibiting E. coli populations in a fashion similar to 

that of a competitive exclusion culture.  However, 

the effects of high grain versus forage diets were not 

examined in this New Zealand-based study (Greg-

ory et al., 2000).  Based on their data, the authors 

concluded, “the most effective way of manipulating 

gastro-intestinal counts of E. coli was to feed hay” 

(Gregory et al., 2000).

Collectively, these results emphasize that while 

dietary manipulations such as shifting cattle from 

a high grain to forage ration could be a power-

ful method to reduce E. coli/STEC populations in 

cattle prior to harvest, the mechanism remains un-

known and the effect is very inconsistent.  It appears 

that a factor in this inconsistency involves forage 

quality and type, but this remains a hypothesis.  It 

does appear that the presence of endproducts of 

fermentation (e.g., VFA) and some secondary plant 

compounds in forages play some role in pathogen 

population levels.  While a dietary switch to forage 

in feedlots is not advocated due to feasibility, weight 

loss and other logistical issues, other high fiber feed-

stuffs (e.g., soy hulls, cottonseed meal) or feedstuffs 

rich in phenolics or essential oils (see below), may be 

a more feasible alternative strategy to decrease in E. 

coli O157:H7 populations.  

Tannins, phenolics, and essential oils

Plants contain phenolic and polyphenolic com-

pounds, such lignin and tannins, that can affect the 

microbial ecosystem of the gastrointestinal tract 

through antimicrobial action (Berard et al., 2009; 

Cowan, 1999; Hristov et al., 2001; Jacob et al., 2009; 

Patra and Saxena, 2009). It is theorized that some of 

these compounds may penetrate biofilms and have 

an anti-quoroum-sensing effect, which may play a 

role in STEC colonization (Edrington et al., 2009b; 

Kociolek, 2009; Sperandio, 2010).  Tannins have been 

demonstrated to significantly inhibit the growth of E. 

coli O157:H7 in vitro and generic E. coli populations 

in cattle (Berard et al., 2009; Cueva et al., 2010; Min 

et al., 2007; Wang et al., 2009).  Other researchers 

have found that the phenolic acids that comprise lig-

nin also demonstrated antimicrobial activity against 

E. coli O157:H7 in fecal slurries, and highly lignified 

forages showed a reduced period of E. coli O157:H7 

shedding compared with cattle fed only corn silage 

(Wells et al., 2005).  Phenolic compounds in cranber-

ry extract and sorrel are also effective against E. coli 

O157:H7 growth in vitro (Caillet et al., 2012; Fullerton 

et al., 2011), also the anthocyanins/proanthocyani-

dins from lowbush blueberries demonstrated in vitro 

potential to inhibit E. coli O157:H7 growth (Lacombe 

et al., 2012).

Essential oils are most often associated with aro-

matic compounds in various plants used as spices 

or extracts (Barbosa et al., 2009).  Many of these es-

sential oils exhibit antimicrobial acitivity (Dusan et 

al., 2006; Fisher and Phillips, 2006; Kim et al., 1995; 

Pattnaik et al., 1996; Reichling et al., 2009; Turgis et 

al., 2009), often through the mode of action of dis-

solving bacterial membranes (Di Pasqua et al., 2007; 

Turgis et al., 2009).  As a result, many plant prod-

ucts have been used for centuries for the preserva-

tion and extension of the shelf life of foods (Dab-

bah et al., 1970).   Essential oils have been proposed 

as potential modifiers of the ruminal fermentation 

(Benchaar et al., 2008; Benchaar et al., 2007; Boadi 

et al., 2004; Patra and Saxena, 2009) and to reduce 

E. coli O157:H7 in the live animal via in vitro studies 

(Benchaar et al., 2008; Jacob et al., 2009).  Some es-

sential oils have been shown to penetrate biofilms 

and kill E. coli O157:H7 (Pérez-Conesa et al., 2011), 

which could potentially play a role in reducing colo-

nization in the rumen and/or terminal rectum.  

Seaweed (Tasco)

Brown seaweed (Tasco-14) is a feed additive that 

has been included in cattle diets to improve carcass 

quality characteristics and shelf life, increase anti-

oxidants and to improve ruminal fermentation ef-

ficiency (Anderson et al., 2006; Braden et al., 2007; 



Agric. Food Anal. Bacteriol. •  AFABjournal.com  •  Vol. 3, Issue 1 - 2013       51

Leupp et al., 2005).  In vitro studies have indicated 

that Tasco-14 can reduce populations of E. coli and 

Salmonella (Callaway, unpublished data), and more 

recent results have linked this antipathogen activity 

to presence of phlorotannins in the brown seaweed 

(Wang et al., 2009).  The phlorotannin anti- E. coli 

activity was greater than that found in other studies 

with terrestrial tannin sources (Min et al., 2007; Wang 

et al., 2009).  Studies in vivo found that Tasco-14 

feeding reduced fecal and hide prevalence of E. coli 

O157 in cattle (Braden et al., 2004).  Because Tas-

co-14 is currently available in the market place, this 

is a product that can be included in cattle rations; 

however the extent of anti-pathogen activity in vivo 

is still not clear, therefore the cost of addition must 

be weighed carefully by the producer.

Citrus products

Orange peel and citrus pulp have excellent nutri-

tional characteristics for cattle and have been includ-

ed as low-cost ration ingredients in dairy and beef 

cattle rations for many years (Arthington et al., 2002).  

Citrus fruits contain a variety of compounds, includ-

ing essential oils and phytophenols that exhibit an-

timicrobial activity against foodborne pathogens 

(Friedly et al., 2009; Mkaddem et al., 2009; Nannapa-

neni et al., 2008; Viuda-Martos et al., 2008).  Other 

studies have found that limonids from grapefruit 

may play a role in inhibiting secretion and intercel-

lular communication by E. coli O157:H7 (Vikram et 

al., 2010). 

Research has demonstrated that the addition of > 

1% orange peel and pulp reduced populations of E. 

coli O157:H7 and Salmonella Typhimurium in mixed 

ruminal fluid fermentations in the laboratory (Calla-

way et al., 2008; Nannapaneni et al., 2008).  Further 

studies have demonstrated that feeding orange peel 

and pulp reduced intestinal populations of diarrhea-

genic E. coli in weaned swine (Collier et al., 2010).  

In ruminants, researchers demonstrated that feeding 

of orange peel and citrus pellets (a 50/50 mixture) 

at levels up to 10% DM reduced artificially inoculat-

ed populations of E. coli O157:H7 and Salmonella 

Typhimurium in sheep (Callaway et al., 2011a; b).  

When studies were performed using only dried pel-

leted orange peel, the reduction in pathogen popu-

lations disappeared (Farrow et al., 2012), likely due 

to the inactivation of essential oils (limonene and 

terpeneless fraction) during the pelleting process.  

Continuing studies have demonstrated that orange 

oils offer a potential method for reducing both STEC 

and Salmonella on beef carcasses as well (Pendleton 

et al., 2012; Pittman et al., 2011).  To date, orange 

peel feeding has not been examined in large-scale 

feeding studies, but retains promise as a potential 

on farm strategy to reduce the burden of pathogens 

on the farm, reducing environmental contamination 

and re-infection. 

Organic acids

Organic acids have been used in animal nutrition 

to modify the ruminal fermentation by providing 

some members of the microbial ecosystem a com-

petitive advantage, and by inhibiting other species 

(Grilli et al., 2010; Martin and Streeter, 1995; Nisbet 

and Martin, 1993; Piva et al., 2007).  Some organic 

acids (such as lactate, acetate, propionate, malate) 

have been shown to have antimicrobial activity 

against E. coli O157:H7 (Harris et al., 2006; Sagong 

et al., 2011; Vandeplas et al., 2010; Wolin, 1969).  

These acids have been used on hide and carcass 

washes to reduce pathogen populations, but only 

recently has interest in using organic acids to reduce 

pathogens in live animals received interest (Callaway 

et al., 2010b; Nisbet et al., 2009).  Preliminary results 

do show some success in inhibiting pathogens in the 

lower intestinal tract of animals (unpublished data), 

however, further research needs to be performed to 

be able to release the appropriate organic acid and 

concentration in the appropriate intestinal location 

to reduce populations of E. coli O157:H7 in cattle.

Ractopamine

  ß-agonists, such as ractopamine, are used in 

cattle to improve animal performance and carcass 

leanness.  In vitro, ractopamine showed no effect on 

growth parameters of E. coli O157:H7 (Edrington et 
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al., 2006c); but when used in sheep, the fecal shed-

ding and cecal populations of E. coli O157:H7 were 

increased (Edrington et al., 2006c).  When feedlot 

cattle were fed ractopamine, the numbers of cattle 

shedding E. coli O157:H7 were decreased (Edring-

ton et al., 2006b).  In a follow-up study, researchers 

demonstrated a negligible effect of ß-agonist (rac-

topamine and zilpaterol) treatment on fecal shed-

ding of E. coli O157:H7 in cattle (Edrington et al., 

2009a; Paddock et al., 2011). Taken as a whole, these 

results indicate that the effects of ß-agonist feeding 

are minimal or non-existent.  Interestingly however, 

in an in vitro swine model norepinephrine was shown 

to increase E. coli O157:H7 adherence (Green et al., 

2004), though further research is obviously needed 

to determine if this applies to cattle colonization.

Ionophores

Ionophores, such as monensin and lasalocid, are 

antimicrobial compounds included in most feedlot 

and dairy rations to inhibit gram-positive bacteria, 

thereby improving feed:gain ratios and production 

efficiency (Callaway et al., 2003).  Because these feed 

additives affect the gram-positive portion of the mi-

crobial population, possibly giving gram-negative 

bacteria (such as E. coli) a competitive advantage, 

they have been investigated as to their role in the 

spread of E. coli O157:H7 in cattle.  Because E. coli 

O157:H7 has a true gram-negative membrane physi-

ology ionophores did not affect the growth of this 

pathogen in vitro when added at concentrations up 

to 3 fold higher than those normally found in the ru-

men (Bach et al., 2002b; Van Baale et al., 2004).  

Early studies demonstrated a marginal increase of 

STEC shedding by heifers fed ionophores (Herriott et 

al., 1998), but other studies found no effect (Dargatz 

et al., 1997).  Further studies examining the effect of 

ionophoric feed additives (monensin, lasalocid, laid-

lomycin and bambermycin) on E. coli O157:H7 dem-

onstrated no effect of these additives in vitro (Edring-

ton et al., 2003b), or on fecal shedding or intestinal 

populations in experimentally-inoculated lambs in a 

short-term (12 d) trial (Edrington et al., 2003a).  In an 

in vivo study using cattle, it was found that cattle fed 

a forage ration that included monensin shed E. coli 

O157:H7 for a shorter period of time than forage-fed 

cattle not supplemented with monensin, but monen-

sin had no effect on shedding when cattle were fed 

a corn-based ration (Van Baale et al., 2004).  In an in 

vitro study, it was found that monensin and the co-

approved antibiotic tylosin (tylan) treatment reduced 

E. coli O157:H7 populations up to 2 log10 CFU/mL 

in ruminal fermentations from cows fed forage, but 

this did not extend to E. coli O157:H7 populations 

in ruminal fluid from cows fed corn (McAllister et al., 

2006).  These researchers later found that the inclu-

sion of monensin and tylosin did not alter fecal shed-

ding of experimentally-inoculated E. coli O157:H7 

when included in barley (grain)-based diet fed to 

cattle (McAllister et al., 2006). These results suggest 

there may a potential interaction between diet and 

ionophore inclusion in the effects on E. coli O157:H7 

populations.  Further studies found that monensin 

decreased E. coli O157:H7 prevalence when fed at 

44 mg/kg of feed, compared to the typical 33 mg/kg 

dosing (Paddock et al., 2011).

CONCLUSIONS

While STEC of many serotypes can be viewed as 

a commensal organism in the gastrointestinal tract 

cattle, they represent a significant threat to human 

consumers and public health.  Pre-harvest controls in 

cattle hold great potential to reduce STEC dissemi-

nation on farms, in the environment, and entering 

the food chain.  However, none of the on farm man-

agement-based controls discussed herein will com-

pletely eliminate STEC from cattle and will certainly 

not eliminate the need for proper procedures in the 

processing plant.  Instead the live-animal manage-

ment controls must be installed in a complementary 

fashion to reduce pathogens in a multiple-hurdle 

approach (Nastasijevic, 2011) that complements the 

in-plant interventions as well, so that the reduction 

in pathogen entry to the food supply can be maxi-

mized.   
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